2 research outputs found

    Influence of CD4 T cells and the source of major histocompatibility complex class II-restricted peptides on cytotoxic T-cell priming by dendritic cells

    No full text
    We have previously reported that bone marrow derived dendritic cells (DC) pulsed with major histocompatibility complex (MHC) class I-restricted peptide efficiently prime a cytotoxic T lymphocyte (CTL) response in vivo. Here we assess the involvement of CD4(+) T cells in the induction of CD8(+) CTL by DC by testing the ability of class II-deficient (C2D) DC, class II mutant (Αβmut) DC and autologous serum generated DC (AS DC) to present class I-restricted antigens in vitro and in vivo. DC generated from the bone marrow of class II knockout mice and transgenic mice expressing a mutant class II that can not bind CD4 were phenotypically similar to wild type (wt) DC, except with regard to MHC class II expression. The C2D and Αβmut DC, though fully capable of presenting the class I-restricted ovalbumin (OVA) peptide to a T-cell hybridoma in vitro, failed to prime a CTL response in vivo. Restoration of class II expression on C2D DC allowed priming of a CTL response; thus, the defect in CTL priming was indeed caused by the absence of class II expression. Likewise, DC generated in autologous serum were unable to prime a CTL response as these DC only express ‘self’ class II epitopes and therefore would not activate syngeneic CD4(+) T cells. Addition of exogenous class II epitopes rescued the ability of AS DC to prime a CTL response. These observations provide convincing evidence that efficient CTL induction by DC in vivo requires concomitant presentation of class II epitopes for CD4(+) T-cell induction
    corecore